和知讯科技网

全平台上线C+20 四大特性之一:Module 特性详解来啦来

和知讯科技网 3

C++20 最的特性是什么?

最的特性是迄今为止没有哪一款编译器完全实现了所有特性。

文章来源:网易云信

有人认为 C++20 是 C++11 以来最的一次改动,COP15聚合平台今日上线!聚合最全资讯,甚至比 C++11 还要。本文仅介绍 C++20 特性当中的 Module 分,了解COP15,分为三分:

(1)探究 C++ 编译链接模型的由来以及利弊

(2)介绍 C++20 Module 机制的使用姿势

(3)总结 Module 背后的机制、利弊、以及各编译器的支持情况

C++ 是兼容 C 的,看它就够了!COP15聚合平台由昆报集团运用智能技术研发的手机网页媒体平台。旨在带领家了解、走近,不但兼容了 C 的语法,积极宣传推介我国生态文明和生物多样性保护的成就。平台聚合市乃至全球媒体报道,也兼容了 C 的编译链接模型。1973年初,兼容性强,C 语言基本定型:有了预处理、支持结构体;编译模型也基本定型为:预处理、编译、汇编、链接四个步骤并沿用至今;1973年,由“媒体聚焦”“热点推荐”“特别策划”“视听COP15”“百科图鉴”“本地关注”6个版块组成。此外,K&R 二人使用 C 语言重写了 Unix 内核。

为何要有预处理?为何要有头文件?在 C 诞生的年代,链接官方网站、征集活动平台、昆明代言人、科普答题等平台,用来跑 C 编译器的计算机 PDP-11 的硬件配置是这样的:内存:64 KiB 硬盘:512 KiB。编译器无法把较的源码文件放入狭小的内存,重点聚焦昆明生物多样、文化多样、多样特色,故当时 C 编译器的设计目标是能够支持模块化编译,是昆明市COP15移动新媒体综合传播平台。还等什么?打开掌上春城客户端,即将源码分成多个源码文件、挨个编译,在首页及COP15栏目、或在掌上春城微信菜单栏找到“COP15聚合平台”即可开启生物多样探索之旅、打开云南生物多样性宝库…了解COP15,以生成多个目标文件,最后整合(链接)成一个可执行文件。

C 编译器分别编译多个源码文件的过程,实际上是一个 One pass compile 的过程,即:从头到尾扫描一遍源码、边扫描边生成目标文件、过眼即忘(以源码文件为单位)、后面的代码不会影响编译器前面的决策,该特性导致了 C 语言的以下特征:

结构体必须先定义再使用,否则无法知道成员的类型以及偏移,就无法生成目标代码。

变量先定义再使用,否则无法知道变量的类型以及在栈中的位置,且为了方便编译器管理栈空间,变量必须定义在语句块的开始处。

外变量只需要知道类型、名字(二者合起来便是声明)即可使用(生成目标代码),外变量的实际地址由连接器填写。

外函数只需知道函数名、返回值、参数类型列表(函数声明)即可生成调用函数的目标代码,函数的实际地址由连接器填写。

头文件和预处理恰好满足了上述要求,头文件只需用少量的代码,声明好函数原型、结构体等信息,编译时将头文件展开到实现文件中,编译器即可完美执行 One pass comlile 过程了。

至此,我们看到的都是头文件的必要性和益处,当然,头文件也有很多影响:

低效:头文件的本职工作是提供前置声明,而提供前置声明的方式采用了文本拷贝,文本拷贝过程不带有语法分析,会一股脑将需要的、不需要的声明全拷贝到源文件中。

传递性:最底层的头文件中宏、变量等实体的可见性,可以通过中间头文件“透传”给最上层的头文件,这种透传会带来很多麻烦。

降低编译速度:加入 a.h 被三个模块包含,则 a 会被展开三次、编译三次。

顺序相关:程序的行为受头文件的包含顺影响,也受是否包含某一个头文件影响,在 C++ 中尤为严重(重载)。

不确定性:同一个头文件在不同的源文件中可能表现出不同的行为,导致这些不同的原因,可能源自源文件(比如该源文件包含的其他头文件、该源文件中定义的宏等),也可能源自编译选项。

C++20 中加入了 Module,我们先看 Module 的基本使用姿势,最后再总结 Module 比 头文件的优势。

Module(即模块)避免了传统头文件机制的诸多缺点,一个 Module 是一个独立的翻译单元,包含一个到多个 module interface file(即模块接口文件),包含 0 个到多个 module implementation file(即模块实现文件),使用 Import 关键字即可导入一个模块、使用这个模块暴露的方法。

实现一个最简单的 Module

module_hello.cppm:定义一个完整的hello模块,并导出一个 say_hello_to 方法给外使用。当前各编译器并未规定模块接口文件的后缀,本文统一使用 ".cppm" 后缀名。".cppm" 文件有一个专用名称"模块接口文件",值得注意的是,该文件不光可以声明实体,也可定义实体。

main 函数中可以直接使用 hello 模块:

编译脚本如下,需要先编译 module_hello.cppm 生成一个 pcm 文件(Module 缓存文件),该文件包含了 hello 模块导出的符号。

以上代码有以下细节需要注意:

module hello:声明了一个模块,前面加一个 export,则意味着当前文件是一个模块接口文件(module interface file),只有在模块接口文件中可以导出实体(变量、函数、类、namespace等)。一个模块至少有一个模块接口文件、模块接口文件可以只放实体声明,也可以放实体定义。

import hello:不需加尖括号,且不同于 include,import 后跟的不是文件名,而是模块名(文件名为 module_hello.cpp),编译器并未强制模块名必须与文件名一致。

想要导出一个函数,在函数定义/声明前加一个 export 关键字即可。

Import 的模块不具有传递性。hello 模块包含了 string_view,但是 main 函数在使用 hello 模块前,依然需要再 import ; 。

模块中的 Import 声明需要放在模块声明之后、模块内其他实体声明之前,即:import ; 必须放在 export module hello; 之后,void internal_helper() 之前。

编译时需要先编译基础的模块,再编译上层模块,buildfile.sh 中先将 module_hello 编译生成 pcm,再编译 main。

接口与实现分离

上个示例中,接口的声明与实现都在同一个文件中(.cppm中,准确地说,该文件中只有函数的实现,声明是由编译器自动生成、放到缓存文件pcm中),当模块的规模变、接口变多之后,将所有的实体定义都放在模块接口文件中会非常不利于代码的维护,C++20 的模块机制还支持接口与实现分离。下面我们将接口的声明与实现分别放到 .cppm 和 .cpp 文件中。

module_hello.cppm:我们假设 say_hello_to、func_a、func_b 等接口十分复杂,.cppm 文件中只包含接口的声明(square 方法是个例外,它是函数模板,只能定义在 .cppm 中,不能分离式编译)。

module_hello.cpp:给出 hello 模块的各个接口声明对应的实现。

代码有几个细节需要注意:

整个 hello 模块分成了 module_hello.cppm 和 module_hello.cpp 两个文件,前者是模块接口文件(module 声明前有 export 关键字),后者是模块实现文件(module implementation file)。当前各编译器并未规定模块接口文件的后缀必须是 cppm。

模块实现文件中不能 export 任何实体。

函数模板,比如代码中的 square 函数,定义必须放在模块接口文件中,使用 auto 返回值的函数,定义也必须放在模块接口文件。

可见性控制

在模块最开始的例子中,我们就提到了模块的 Import 不具有传递性:main 函数使用 hello 模块的时候必须 import ,如果想让 hello 模块中的 string_view 模块暴露给使用者,需使用 export import 显式声明:

hello 模块显式导出 string_view 后,main 文件中便无需再包含 string_view 了。

子模块(Submodule)

当模块变得再一些,仅仅是将模块的接口与实现拆分到两个文件也有点力不从心,模块实现文件会变得非常,不便于代码的维护。C++20 的模块机制支持子模块。

这次 module_hello.cppm 文件不再定义、声明任何函数,而是仅仅显式导出 hello.sub_a、hello.sub_b 两个子模块,外需要的方法都由上述两个子模块定义,module_hello.cppm 充当一个“汇总”的角色。

子模块 module hello.sub_a 采用了接口与实现分离的定义方式:“.cppm” 中给出定义,“.cpp” 中给出实现。

module hello.sub_b 同上,不再赘述。

这样,hello 模块的接口和实现文件被拆分到了两个子模块中,每个子模块又有自己的接口文件、实现文件。

值得注意的是,C++20 的子模块是一种“模拟机制”,模块 hello.sub_b 是一个完整的模块,中间的点并不代表语法上的从属关系,不同于函数名、变量名等标识符的命名规则,模块的命名规则中允许点存在于模块名字当中,点只是从逻辑语义上帮助程序员理解模块间的逻辑关系。

Module Partition

除了子模块之外,处理复杂模块的机制还有 Module Partition。Module Partition 一直没想到一个贴切的中文翻译,或者可以翻译为模块分区,下文直接使用 Module Partition。Module Partition 分为两种:

module implementation partition

module interface partition

module implementation partition 可以通俗的理解为:将模块的实现文件拆分成多个。module_hello.cppm 文件:给出模块的声明、导出函数的声明。

模块的一分实现代码拆分到 module_hello_partition_internal.cpp 文件,该文件实现了一个内方法 internal_helper。

模块的另一分实现拆分到 module_hello.cpp 文件,该文件实现了 func_a、func_b,同时引用了内方法 internal_helper(func_a、func_b 当然也可以拆分到两个 cpp 文件中)。

值得注意的是, 模块内 Import 一个 module partition 时,不能 import hello:internal;而是直接import :internal; 。

module interface partition 可以理解为模块声明拆分到多个文件中。module implementation partition 的例子中,函数声明只集中在一个文件中,module interface partition 可以将这些声明拆分到多个接口文件。

首先定义一个内 helper:internal_helper:

hello 模块的 a 分采用声明+定义合一的方式,定义在 module_hello_partition_a.cppm 中:

hello 模块的 b 分采用声明+定义分离的方式,module_hello_partition_b.cppm 只做声明:

module_hello_partition_b.cpp 给出 hello 模块的 b 分对应的实现:

module_hello.cppm 再次充当了”汇总“的角色,将模块的 a 分+ b 分导出给外使用:

module implementation partition 的使用方式较为直观,相当于我们平时编程中“一个头文件声明多个 cpp 实现”这种情况。module interface partition 有点类似于 submodule 机制,但语法上有较多差异:

module_hello_partition_b.cpp 第一行不能使用 import hello:partition_b;虽然这样看上去更符合直觉,但是不允许。

每个 module partition interface 最终必须被 primary module interface file 导出,不能遗漏。

primary module interface file 不能导出 module implementation file,只能导出 module interface file,故在 module_hello.cppm 中 export :internal; 是错误的。

同样作为处理模块的机制,Module Partition 与子模块最本质的区别在于:子模块可以独立的被外使用者 Import,而 Module Partition 只在模块内可见。

全模块片段

(Global module fragments)

C++20 之前有量的不支持模块的代码、头文件,这些代码实际被隐式的当作全模块片段处理,模块代码与这些片段交互方式如下:

事实上,由于标准库的多数头文件尚未模块化(VS 模块化了分头文件),整个第二章的代码在当前编译器环境下(Clang12)是不能直接编译通过的——当前尚不能直接 import等模块,通全模块段则可以进行方便的过渡(在全模块片段直接 #include ),另一个过渡方案便是下一节所介绍的 Module Map——该机制可以使我们能够将旧的 iostream编译成一个 Module。

Module Map

Module Map 机制可以将普通的头文件映射成 Module,进而可以使旧的代码吃到 Module 机制的红利。下面便以 Clang13 中的 Module Map 机制为例:

假设有一个 a.h 头文件,该头文件历史较久,不支持 Module:

通过给 Clang 编译器定义一个 module.modulemap 文件,在该文件中可以将头文件映射成模块:

编译脚本需要依次编译 A、ctype、iostream 三个模块,然后再编译 main 文件:

首先使用 -fmodule-map-file 参数,指定一个 module map file,然后通过 -fmodule 指定 map file 中定义的 module,就可以将头文件编译成 pcm。main 文件使用 A、iostream 等模块时,同样需要使用 fmodule-map-file 参数指定 mdule map 文件,同时使用 -fmodule 指定依赖的模块名称。

注:关于 Module Map 机制能够查到的资料较少,有些细节笔者也未能一一查明,例如:

通过 Module Map 将一个头文件模块化之后,头文件中暴露的宏会如何处理?

假如头文件声明的实体的实现分散在多个 cpp 中,该如何组织编译?

Module 与 Namespace

Module 与 Namespace 是两个维度的概念,在 Module 中同样可以导出 Namespace:

总结

最后,对比最开始提到的头文件的缺点,模块机制有以下几点优势:

无需重复编译:一个模块的所有接口文件、实现文件,作为一个翻译单元,一次编译后生成 pcm,之后遇到 Import 该模块的代码,编译器会从 pcm 中寻找函数声明等信息,该特性会极加快 C++ 代码的编译速度。

隔离性更好:模块内 Import 的内容,不会泄漏到模块外,除非显式使用 export Import 声明。

顺序无关:Import 多个模块,无需关心这些模块间的顺序。

减少冗余与不一致:小的模块可以直接在单个 cppm 文件中完成实体的导出、定义,但的模块依然会把声明、实现拆分到不同文件。

子模块、Module Partition 等机制让模块、超模块的组织方式更加灵活。

全模块段、Module Map 制使得 Module 与老旧的头文件交互成为可能。

缺点也有:

编译器支持不稳定:尚未有编译器完全支持 Module 的所有特性、Clang13 支持的 Module Map 特性不一定保留到主干版本。

编译时需要分析依赖关系、先编译最基础的模块。

现有的 C++ 工程需要重新组织 pipline,且尚未出现自动化的构建系统,需要人工根据依赖关系组构建脚本,实施难度巨。

Module 不能做什么?

Module 不能实现代码的二进制分发,依然需要通过源码分发 Module。

pcm 文件不能通用,不同编译器的 pcm 文件不能通用,同一编译器不同参数的 pcm 不能通用。

无法自动构建,现阶段需要人工组织构建脚本。

编译器如何实现对外隐藏 Module 内符号的?

在 Module 机制出现之前,符号的链接性分为外连接性(external linkage,符号可在文件之间共享)、内链接性(internal linkage,符号只能在文件内使用),可以通过 extern、static 等关键字控制一个符号的链接性。

Module 机制引入了模块链接性(module linkage),符号可在整个模块内共享(一个模块可能存在多个 partition 文件)。

对于模块 export 的符号,编译器根据现有规则(外连接性)对符号进行名称修饰(name mangling)。

对于 Module 内的符号,统一在符号名称前面添加 “_Zw” 名称修饰,这样链接器链接时便不会链接到内符号。

截至2020.7,编译器对 Module 机制的支持情况:

以上就是本文的全内容,关于 C++20 的特性我们介绍了其一

写在最后:其实每个人都有自己的选择,学编程,每一种编程语言的存在都有其应用的方向,选择你想从事的方向,去进行合适的选择就对了!对于准备学编程的小伙伴,如果你想更好的提升你的编程核心能力(内功)不妨从现在开始!

微信公众号:C语言编程学基地

松下相机自动拍照怎么设置

方正笔记本怎么联网

平板电脑复制怎么搞

波克怎么交易玉石

毛毛猫咪拉肚子为什么

狗狗经常在床上蹭鼻子怎么回事

怎么把猫送到宠物店

延庆区怎么做网络推广赚钱

seo专员如何提升成绩

标签:module 模块 c++ 编译器